Einführung in die Physik I: Mechanik und Thermodynamik
Universität Basel
Herbstsemester 2022
Due to Friday 28.10.2022, 1 pm

Exercise Sheet 4

Remember to specify your name, the number of your group and the name of the assistants in your group on the sheet that you hand in.

Question 1 (4 points)

A body having mass $\mathrm{m}=10 \mathrm{~kg}$ is moving along a horizontal path with velocity
$\mathrm{v}_{0}=3 \mathrm{~m} / \mathrm{s}$, when a constant force f starts to oppose to the movement until the body is brought to rest within 10 s .
(a) Evaluate the impulse during the 10 s interval
(b) Evaluate the magnitude of the force

Question 2 (3 points)

Consider the 2.0 m long uniform beam shown in Fig.(1) (all the forces acting on it are shown). Determine the net torque about:
(a) point C (exactly in the middle of the beam)
(b) point P at one end of the beam

Figure 1: Forces applied on the beam.

Question 3 (3 points)

A simple pendulum is constituted by a point mass $\mathrm{m}=30 \mathrm{~g}$ suspended by an inextensible flexible wire of length $\mathrm{l}=50 \mathrm{~cm}$ (the mass of the wire is negligible).
(a) Evaluate the period of oscillation of the pendulum
(b) Knowing that the pendulum is brought to an initial angle $\theta=4^{\circ}$ with respect to its vertical equilibrium position, and then it's released with an initial velocity equal to zero, write down the equation of motion $(\theta(\mathrm{t})$)

Problem 1 (10 points)

A 265 kg load is lifted 18 m vertically with an acceleration $\mathrm{a}=0.160 \mathrm{~g}$ by a single cable. The force that the cable applies on the load to lift it up is $3 \times 10^{3} \mathrm{~N}$. Determine:
(a) the net work done on the load
(b) the work done by the cable on the load
(c) the work done by gravity on the load
(d) the final speed of the load assuming it started from rest

Problem 2 (10 points)

A ball having mass $\mathrm{m}=0.48 \mathrm{~kg}$ is thrown with a speed of $8.8 \mathrm{~m} / \mathrm{s}$ at an upward angle of 36°. If we neglect the effect of air resistance
(a) What is its speed at its highest point?
(b) Which is the maximum height reached by the ball?
(c) At what point does the ball have the highest energy?

If the ball is now thrown straight up, neglecting air resistance, indicate which of the following statements are true/false regarding the energy of the ball. Briefly justify your answers.
i. The potential energy decreases while the ball is going up
ii. The kinetic energy decreases while the ball is going up
iii. The sum of the kinetic energy and potential energy is constant
iv. The potential energy decreases when the ball is coming down
v. The kinetic energy increases when the ball is coming down

