Einführung in die Physik I: Mechanik und Thermodynamik

Universität Basel
Herbstsemester 2022
Due to Friday 21.10.2022, 1 pm

Exercise Sheet 3

Remember to specify your name, the number of your group and the name of the assistants in your group on the sheet that you hand in.

Question 1 (2 points)

A ball is thrown downward at a speed of $20 \mathrm{~m} / \mathrm{s}$. Choosing the +y axis pointing up and neglecting air resistance, which of the following equations (more than one answer is possible) are correct? Briefly justify your answer.
(a) $\mathrm{v}=20-\mathrm{gt}$
(b) $\mathrm{y}=\mathrm{y}_{0}-20 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
(c) $\mathrm{v}^{2}=400-2 \mathrm{~g}\left(\mathrm{y}-\mathrm{y}_{0}\right)$
(d) $20=\frac{v+v_{0}}{2}$
(e) all of the above

Question 2 (2 points)

An object starts from rest and falls under the influence of gravity. Draw plots of
(a) its velocity
(b) the distance it has fallen
as function of time from $t=0 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$. Ignore air resistance.

Question 3 (3 points)

(a) What is the acceleration of two falling sky divers (total mass $=132 \mathrm{~kg}$ including parachute) when the upward force of air resistance is equal to one-fourth of their weight?
(b) After opening the parachute, the divers descend to the ground at constant speed. What now is the force of air resistance on the sky divers and their parachute?

Question 4 (3 points)

Evaluate the Coriolis acceleration of a rocket flying with velocity v' $=10^{3} \mathrm{~m} / \mathrm{s}$ along one of the Earth's parallels.

Problem 1 (10 points)

Two aircrafts travel on the same plane with velocity $\mathrm{v}_{1}=500 \mathrm{~km} / \mathrm{h}$ and $\mathrm{v}_{2}=800 \mathrm{~km} / \mathrm{h}$ respectively. The directions of motion generate an angle $\theta=30^{\circ}$ as the two aircrafts move away from each other. Evaluate:
(a) The magnitude of the relative velocity of the second aircraft with respect to the first one
(b) The direction of the relative velocity of the second aircraft with respect to the first one

Problem 2 (10 points)

Three blocks on a frictionless horizontal surface are in contact with each other as shown in Figure 1.
A force is applied to block A.
(a) Draw all the forces acting on each single block

Knowing that $\mathrm{m}_{A}=\mathrm{m}_{B}=\mathrm{m}_{C}=10 \mathrm{~kg}$, and $\mathrm{F}=96 \mathrm{~N}$, determine
(b) the acceleration of the system
(c) the net force on each block
(d) the force of contact that each block exerts on its neighbor

Figure 1

