# Einführung in die Physik I: Mechanik und Thermodynamik 

Universität Basel
Herbstsemester 2022
Due to Friday $14.10 .2022,1 \mathrm{pm}$

## Exercise Sheet 2

Remember to specify your name, the number of your group and the name of the assistants in your group on the sheet that you hand in.

## Question 1 (1 point)

If an object is moving, is it possible for the net force acting on it to be zero? Explain.

## Question 2 (1 point)

If the acceleration of an object is zero, are no forces acting on it? Explain.

## Question 3 (3 points)

A point mass moves along a straight path. Its initial velocity is $v_{0}=10 \mathrm{~m} / \mathrm{s}$, oriented along the positive direction of the axis. The acceleration is constant and negative, with magnitude $a_{0}=4 \mathrm{~m} / \mathrm{s}^{2}$. Provide the expression for the space travelled before the point mass stops.

## Question 4 (5 points)

A point mass moves with acceleration $a$ following the representation

$$
\left\{\begin{array}{l}
\mathrm{a}_{x}=2 \mathrm{t} \\
\mathrm{a}_{y}=3 \\
\mathrm{a}_{z}=0
\end{array}\right.
$$

At time $\mathrm{t}=5$, the velocity of the point mass is

$$
\begin{aligned}
& v_{x}(5)=30 \\
& v_{y}(5)=10 \\
& v_{z}(5)=12
\end{aligned}
$$

Evaluate the velocity variation as function of time.

## Problem 1 (10 points)

Consider a circular platform of radius $\mathrm{R}=2 \mathrm{~m}$. At the time instant $\mathrm{t}=0$ it is at rest. When it starts moving, it has a constant angular acceleration $\mathrm{d} \omega / \mathrm{dt}=\dot{\omega}=0.2 \mathrm{rad} / \mathrm{s}^{2}$. Evaluate:
(a) The angular velocity after 2 s (2.5 points)
(b) The magnitude of the acceleration experienced by a particle placed at the edge of the platform (at a distance corresponding to R ) ( 2.5 points)

If at $\mathrm{t}=3 \mathrm{~s}$, the acceleration of the particle is $1.05 \mathrm{~m} / \mathrm{s}^{2}$ in a direction that makes an angle of $25^{\circ}$ to its direction of motion, evaluate:
(c) The speed of the particle at $\mathrm{t}=3 \mathrm{~s}$ (2.5 points)
(d) The speed of the particle at $\mathrm{t}=5 \mathrm{~s}$ (2.5 points)

## Problem 2 (10 points)

A point mass is launched with velocity $\mathrm{v}_{0}=12 \mathrm{~m} / \mathrm{s}$ out of a window placed at 8 m from ground level. The angle $\alpha$ that the initial velocity forms with the horizontal is $30^{\circ}$ (see Figure 1). Evaluate:
(a) The law of motion (4 points)
(b) The distance $\mathrm{y}_{c}$ from the window at which the point mass lands (2 points)
(c) The time instant at which the point mass lands (2 points)
(d) The maximum height $z_{m}$ reached by the point mass (2 points)


Figure 1: Motion of the point mass

